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This is a revised version of slides presented Feb. 12, 2003, as the keynote 
address of the Symposium on Accelerating Mathematical-Biological 
Linkages, Natcher Building, National Institutes of Health.

The text of the slides has been substantially improved by the comments of 
many members of the Symposium (see acknowledgments at end). The 
notes that accompany each slide may contain materials quoted from others; 
in such cases, authors are identified.

Thanks to Margaret Palmer, Sam Scheiner, Michael Steuerwalt, James 
Cassatt, Mike Marron, John Whitmarsh and directors of NSF and NIH for 
organizing this meeting, and taxpayers for paying for it.
This talk will give an overview, big picture, with 3 concrete examples.
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Mathematics Is Biology’s Next 
Microscope, Only Better

• Microscope (late 17th C.) caused revolution in 
biology by revealing otherwise invisible, & 
previously unsuspected, worlds.

• Mathematics (broadly interpreted) can reveal 
otherwise invisible worlds in all kinds of data, not 
only optical.

Microscope
http://www.healthmedialab.com/art/exhibits/leeuwenhoek.jpg
Mütter Museum, The College of Physicians of Philadelphia.  Used with 
permission.

Specimen from the Visible Human Male - Head subset 
http://www.nlm.nih.gov/research/visible/image/head_fresh.jpg
National Library of Medicine
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“Mathematics seems to endow one 
with something like a new sense.”

Charles Darwin

Bell, Eric Temple  1937  Men of Mathematics. New York: Simon and
Schuster. Darwin quoted on p. 16.
Darwin
http://www.probertencyclopaedia.com/j/Charles%20Darwin.jpg
Permission granted by the web site.
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Biology Is Mathematics’ Next 
Physics, Only Better

• Physics stimulated enormous advances in 
mathematics, e.g. geometry, calculus.

• Biology can stimulate creation of new realms 
of mathematics.

• Is living nature qualitatively more 
heterogeneous than non-living nature?

Newton
http://www.probertencyclopaedia.com/j/Sir%20Isaac%20Newton.jpg
Mendel
http://www.probertencyclopaedia.com/j/Gregor%20Mendel.jpg
Permissions granted by the web site.

Originally, I asserted that the reason biology can stimulate the creation of 
new realms of mathematics is that life is more heterogeneous than non-living 
nature. But then I asked myself: How could I test quantitatively my intuitive 
feeling that living nature is qualitatively more heterogeneous than non-living 
nature? For example, there are 2,000-5,000 species of rocks and minerals in 
the Earth’s crust, whereas there are perhaps 1,000 times more living species 
(somewhere between 3 million and 30 million – guesswork). But perhaps 
mineral species and biological species are not comparable. Is living nature 
more heterogeneous?
Shipman, J.T., Wilson, J.D. and Todd, A.W., An Introduction to Physical
Science, 10th Ed., Houghton-Mifflin, 2003. Ch. 21 estimates 2000 minerals 
in Earth’s crust.
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Biology since 1500
• External factor: Columbian exchange 

(New World species, foods, diseases) 

• Technical progress
– quantitation (Harvey 1615 [1628])
– microscope (Leeuwenhoek 1660-1700)
– chemistry (Liebig 1855)

• Conceptual progress
– anatomical observation (Vesalius 1543)
– cell theory (Schleiden Schwann Virchow

Weissman 1838-80) 
– evolution (Darwin Wallace 1859)
– genes (Mendel Correns von Seysenegg deVries

1865-1900)

I summarize 500 years of biology in a single slide. The period since 1500 began with a major external 
shock: the discovery of New World species not previously described, the revolution in Old World 
agriculture from the introduction of New World cultivars, and the probable exchanges of smallpox and 
syphilis between the Old World and the New. 
Important advances were technical and conceptual.
Technical: The use of the microscope by van Leeuwenhoek and many others to examine microbes 
revealed further new realms of life. 
Conceptual: Vesalius’ introduction of direct observation in anatomy challenged 14 centuries of 
dominance by Galen.
The most important conceptual advance was the Darwin-Wallace theory of evolution because it made 
biological variability a centerpiece of reality, not a shadow of some Platonic ideals. Darwin and 
Wallace finally shattered the grip of Platonism on Western thought.
Cell theory background:
http://www.uwinnipeg.ca/~simmons/cellthry.htm
1665 Robert Hooke - reported to the Royal Society of London his observation of "Cells" in a piece of 
cork. 1838-39 the general statement of "cell theory" receive general acceptance. 

M.J. Schleiden and Theodor Schwann both published separate conclusions that expressed the 
principle of cell theory. "all living things are composed of living cells" 
In 1855 Rudolf Virchow proposed an important extension of cell theory that "All living cells arise from 
pre-existing cells". ("Omnis cellula e celula") This statement has become what is known as the 
"Biogenic law".
August Weissman 1880 "that cells living today can trace their ancestry back to ancient times“
Genes and chromosomes
http://webpages.marshall.edu/~adkinsda/B111OutlinesChromInhIntro.html
Three botanists (Correns, von Seysenegg and deVries) independently discovered Mendel's principles 
of segregation and independent assortment.
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William Harvey (1578-1659)
Exercitatio Anatomica

De Motu Cordis et 
Sanguinis In 
Animalibus (1628)

William Harvey, father of quantitative biology, used off-the-shelf mathematics 
(elementary arithmetic) to make a stunning discovery: blood circulates in the 
human body.
Studied at Padua 1600-02 while Galileo was active there. Knew blood 
circulated by 1615, but did not publish until 1628, partly out of concern for 
the unfavorable effect of such radical ideas on his practice.
Because Harvey was physician to the King, Harvey had access to the deer 
in the King’s deer park. He also dissected executed criminals.
William Harvey 
www.probertencyclopaedia.com/j/William%20Harvey.jpg
Permission granted by the web site.
Arms
phy025.lubb.ttuhsc.edu/Figures/circulation.gif
Image courtesy of the National Library of Medicine.
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Harvey showed that blood circulates
• Galen (2d C.): blood ebbs & flows, pumped 

by arteries; heart is passive.
• Harvey (1615): heart & veins have 1-way 

valves; flow is unidirectional.
• Left ventricle (dead) holds 2 oz. ~ 60 ml.
• >1/8-1/4 of blood is expelled per stroke.
• Heart beats 60-100 times/minute.
• ∴ 60ml x 1/8 x 60 beats/min x 60 = 27 l/h.
• Average human has 5.5 l blood.
[Marcello Malpighi (1628-94) saw capillaries.]

Prior theory (for 14 centuries!) was that blood was created from food, that 
arteries were the active agent of pumping, that blood ebbed and flowed, like 
the tides, through blood vessels, and that the heart was a passive 
receptacle. 
Harvey proved that the hourly output of the heart was many times more than 
the total blood volume of the body. All that output couldn’t come from 
ingested food, because people don’t eat 27 l/h of food. So the blood that 
goes out must come back again to the heart, i.e., blood circulates. Harvey 
could not see the smallest vessels (capillaries) through which blood returns 
from the arteries to the veins, but his quantitative argument proved they must 
exist.
By end of 17th century, microscopists observed capillaries directly. Van 
Leeuwenhoek confirmed Malpighi’s observation of capillaries.
Taylor, F. Sherwood  1949  A Short History of Science and Scientific 
Thought. New York: Norton. Harvey’s reasoning is quoted on p. 103.
Harvey took account of uncertainty of observations. E.g., he said that 
ventricle holds 2 oz., with a RANGE from 1.5 to 3 oz. Expulsion factor 
RANGED from 1/8 to 1/4. He was conscious of uncertainty.
This must be one of the most beautiful examples of the tremendous power of 
simple, off-the-shelf mathematics to illuminate a biological problem. Harvey 
predicted the existence of capillaries (to return the blood from the arteries to 
the veins) from pure theory, more than half a century before they were 
observed.
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Mathematics since 1500
• Geometry & topology

– analytic geometry (Descartes 1637)
– non-Euclidean geometries (1823-1830)

• Algebra
– roots of equations, group theory, symmetry
– linear algebra (19th-20th C.)

• Analysis: modern mathematical thought
– probability (Pascal Fermat 1654 DeMoivre

Laplace Gauss 1733-1809 normal curve)
– calculus: theory of limits (Newton 1666 Leibniz)

• External factor: computers (war, business)

Descartes married the Greek and the Arabic traditions of mathematical thought by putting a 
coordinate system on the featureless geometric plane of the Greeks and showing that 
algebraic equations have simple geometric interpretations, and simple geometric figures 
have simple algebraic representations. Any biologist who has ever plotted (x, y) data is using 
the invention of Descartes.
Modern thought is separated from  classical thought by the calculus (the theory of limits and 
continuous functions) and the theory of (continuous) probability. Neither theory has any 
counterpart in classical thought. No person who has not understood at least the rudiments of 
both of these theories has entered modern thought.
http://www.stat.wvu.edu/SRS/Modules/Normal/normal.html
“History
The normal curve was developed mathematically in 1733 by DeMoivre as an approximation 
to the binomial distribution. His paper was not discovered until 1924 by Karl Pearson. 
Laplace used the normal curve in 1783 to describe the distribution of errors. Subsequently, 
Gauss used the normal curve to analyze astronomical data in 1809. The normal curve is 
often called the Gaussian distribution. The term bell-shaped curve is often used in everyday 
usage.”
Whereas biology received its main external shock (discovery of New World) around 1500, 
math received its main external shock (computers) toward the end of the most recent 5 
centuries, driven by the demands of war and business.  Hollerith punched cards originated in 
the control of looms for weaving. The demand for ordnance tables and bomb calculations 
drove the early development of computers.
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Mathematics arising from 
biological problems (1)

• Age structure of stable populations 
(Euler 1760)

• Logistic equation for limited population 
growth (Verhulst 1838)

• Branching processes, extinction of 
family names (Galton 1889)

• Correlation (K. Pearson 1903)

This list is not to identify all the many places where mathematics has been 
useful in biology, but to give examples where a biological challenge or 
problem led to the creation of new mathematics. To the question, what can 
biology do for mathematics?, here are some answers. The list is intended to 
be illustrative, not exhaustive, and is  not intended as a scholarly history. For 
example there is a history of game theory before von Neumann (1944), and 
Pearson’s development of the correlation coefficient rested on earlier work 
by Galton. Many of these developments blend smoothly into their 
antecedents and later elaborations.

Keyfitz, Introduction to the Mathematics of Population gives references to 
Euler, Verhulst.

K. Pearson and A. Lee, 1903 On the laws of inheritance in man. Biometrika
ii, 357-462.
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Mathematics arising from 
biological problems (2)

• Markov chains, statistics of language 
(Markov 1906)

• Hardy-Weinberg equilibrium (1908)
• Analysis of variance, design of 

agricultural experiments (Fisher 1920s)
• Dynamics of interacting species (Lotka

1922 Volterra 1926-37)
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Mathematics arising from 
biological problems (3)

• Birth process (Yule 1925), birth and 
death process (D.G. Kendall 1948)

• Traveling waves in genetics (Fisher; 
Kolmogorov Petrovsky Piscounov 1937)

• Game theory (von Neumann 1944)
• Distribution for estimating bacterial 

mutation rates (Luria Delbruck 1943)
• Morphogenesis (Turing 1952)

Noah Rosenberg <noahr@hto-b.usc.edu> Yule's birth process (Phil Trans R Soc Lond Ser 
B [1925], 21-87): develops the pure birth process to study the distribution of the number of 
species in a genus.
M. S. Bartlett Stochastic Processes gives ref. to DG Kendall 1948
R. A. FISHER, The wave of advance of advantageous genes, Annals of Eugenics 7, 353-
369 (1937).
A. KOLMOGOROV, I. PETROVSKY, AND N. PISCOUNOV, Etude de l’équation de la 
diffusion avec croissance de la quantité de matière et son application à un probleme
biologique, Moscow University Bull. Math. 1, 1-25 (1937).
J. A. MURRAY, Mathematical Biology (Springer-Verlag, Berlin, 1998).
M. BRAMSON, Convergence of solutions of the Kolmogorov equations to traveling waves, 
Memoirs of the American Mathematical Society 44 (1983).
Example of recent work on this equation: 
http://www.math.rochester.edu/people/faculty/cmlr/Preprints/noisy-fkpp.pdf
Noah Rosenberg <noahr@hto-b.usc.edu>  Luria-Delbruck distribution (Genetics 28, 491-511 
[1943]): initially a method for estimating bacterial mutation rates, the distribution has since 
been studied as an entity in itself (Kepler and Oprea, Theor Pop Biol 59, 41-48 [2001]).
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Mathematics arising from 
biological problems (4)

• Diffusion equation for gene frequencies 
(Kimura 1954)

• Circular interval graphs, genetic fine 
structure (Benzer 1959) 

• Threshold functions of random graphs, 
models of communication networks or 
“even of organic structures of living 
matter” (Erdös-Rényi 1960)

Noah Rosenberg <noahr@hto-b.usc.edu> “Kimura's solution of the diffusion 
equation for gene frequencies (papers 1-4 in Kimura "Population Genetics, 
Molecular Evolution, and the Neutral Theory" [1994]): … some of the 
mathematics was independently derived by Kimura, leading to further 
interest in diffusion methods ...”
Crow and Kimura, An Introduction to Population Genetics Theory, gives 
detailed bibliography.
http://dimacs.rutgers.edu/dci/2001/abstractswk1right.html
Fred S. Roberts  Rutgers University  From Genes to Archaeological Digs 
and from Traffic Lights to Childhood Development: The Many Applications of 
Interval Graphs
“The concept of interval graph was introduced by the Hungarian 
mathematician Hajos in connection with a scheduling problem and 
independently by the geneticist Seymour Benzer in connection with the 
problem of understanding the makeup of the fine structure inside the gene. 
Since then, this one simple idea has had applications in archaeology, 
developmental psychology, utility theory in economics, traffic light phasing, 
ecology, and many other areas, and has given rise to some fascinating 
mathematical theories and algorithms.”
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Mathematics arising from 
biological problems (5)

• Sampling formula for haplotype
frequencies (Ewens 1972) 

• Coalescent, genealogy of populations 
(Kingman 1982)

Noah Rosenberg <noahr@hto-b.usc.edu> 
“Ewens sampling formula (Theoretical Population Biology 3, 87-112 [1972]): 
a probability distribution that arises from considering haplotype frequencies 
in a population. Apparently the distribution has since appeared in connection 
with various other combinatorial problems (Johnson, Kotz, and Balakrishnan
"Discrete Multivariate Distributions" 1997, p. 232-246).”
http://www.stats.ox.ac.uk/mathgen/coalescent.html
“Coalescent methods 
One of the most important recent developments in population genetics modelling is the use of 

coalescent or genealogical methods. These methods focus on modelling the genealogy (ancestral 
history) of a random sample of genes from the population, using a stochastic process known as the 
coalescent (Kingman, 1982). An understanding of the genealogy can give both a qualitative and 
quantitative understanding of the patterns of variation in genetic data, and use of coalescent methods 
leads to efficient simulation methods, and to inference techniques which make full use of all 
information in the data. 
Selected references  Donnelly, P. and S. Tavaré (1995). Coalescents and genealogical structure 

under neutrality. Ann. Rev. Genet., 29:401-421  Hudson, R.R. (1991). Gene genealogies and the 
coalescent process. In Oxford Surveys of Evolutionary Biology, ed. D. Futuyma and J. Antonovics, 
7:1-44. Oxford: Oxford University Press. 
Kingman, J.F.C. (1982). On the genealogy of large populations. J. Appl. Prob., 19A:27-43  Kingman, 

J.F.C. (1982). The coalescent. Stochastic Processes and their Applications, 13:235-248”
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I offer a map of the landscapes of biology and applied mathematics to 
provide a framework for classifying and relating the many diverse efforts that 
use mathematics in biology.
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The biological landscape
Domains
• Molecules
• Cells
• Tissues
• Organs
• Individuals
• Populations
• Communities, 

ecosystems
• Biosphere

Questions
• Structure(s)

– How is it built?
• Function(s)

– How does it work?
• Pathology(ies)

– What goes wrong?
• Repair(s)

– How is it fixed?
• Origin(s)

– How did it begin?

Gramicidin molecule 
http://www.ticam.utexas.edu/CCV/projects/Angstrom/gramicidin.jpg
Permission granted by Chandrajit Bajaj.  "Dynamic Maintenance and 
Visualization of Molecular Surfaces", C. Bajaj, V. Pascucci, R. Holt, A. 
Netravali, Fourth Issue of Discrete Applied Mathematics on Computational 
Molecular Biology", 2002. 
http://www.ticam.utexas.edu/CCV/projects/Angstrom/
Mouse http://ink.primate.wisc.edu/~assay/mouse.jpg
Permission granted by Fritz Wegner, Wisconsin National Primate Research 
Center
Corals  http://www.rockefeller.edu/pubinfo/012103a.jpg
Permission granted by LeRoy Headlee 
Mountain landscape photograph by Joel E. Cohen from High Point, Ulster 
County, New York 2001. Commercial use without permission is prohibited.

The questions correspond to the rows of a matrix, while the domains identify 
the columns of the matrix. Many biological research problems can be 
classified by the combination of question(s) and domain(s). Many studies 
involve more than one of these questions and more than one of these 
domains.
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The applied mathematical landscape
• Data structures
• Algorithms

– analyze data
– analyze models

• Theories & models, including all pure math
– analyze data
– analyze ideas

• Computers & software
– embody mathematical knowledge
– interface with humans (vision, speech)
– compute

These four main headings of the applied mathematical landscape might be thought of as 
lying at the vertices of a tetrahedron, each strongly interacting with all the others. 
Algorithms that analyze data: least squares
Algorithms that analyze models: finding eigenvectors of a matrix
From: Zaida Luthey-Schulten <schulten@scs.uiuc.edu> 
“ “Mathematics Unlimited - 2001 and Beyond” Engquist and Schmid, Editors (Springer 
Press). Top Ten Algorithms that had the most influence on problems in science and 
engineering in the previous century. The original list appeared in the first issue of the new 
millennium in “Computing in Science and Engineering Journal”:  Top Ten Algorithms
1. Metropolis Algorithm (Monte Carlo)
2. Simplex Method for Linear Programming
3. Krylov Subspace Methods - to solve sparse matrices in linear systems of equations
4. QR algorithms to decompose matrix - eigenvalue problems
5. Optimization Fortran Compiler
6. Decomposition Approaches to Matrix Computations - LU, Cholesky, Schur,…
7. Quicksort
8. Fast Fourier Transform
9. Fast Mulitpole methods - For problems in electrostatics
10. Integer Relation Detection Methods - For classification of Feynman diagrams in 
quantum field theory
Several authors including I think that the list should also include Molecular Dynamics, 
Dynamic Programming Algorithms, Hidden Markov Methods, Genetic Algorithms”
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The landscape of biology and 
mathematics

The landscape of research in  
mathematics and biology contains all 
combinations of a problem from the 
matrix of biological problems and  
problem areas from applied 
mathematics.

The landscape of research in the intersection of mathematics and biology 
can be thought of as the Cartesian product of the matrix of problems from 
biology times the tetrahedron of problems from applied mathematics: each 
topic of research combines a question, a biological domain, and some set of 
mathematical techniques or results.

Example 1 comes from the domain:
How does it work  x  cells  x algorithms & computer software

Example 2 comes from the domain:
How is it built x ecological community x data structure
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Outline
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– examples: complete data are published
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– potential problems
– opportunities
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Example 1: integrate gene 
expression & molecular 

pharmacology

• Scherf U, 16 others. A gene expression database for 
the molecular pharmacology of cancer. Nature 
Genetics 2000 Mar; 24(3):236-44.

Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, 
Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville
EA, Pommier Y, Botstein D, Brown PO, Weinstein JN. A gene expression 
database for the molecular pharmacology of cancer. Nat Genet. 2000 
Mar;24(3):236-44. 
http://discover.nci.nih.gov/arraytools/
“We used cDNA microarrays to assess gene expression profiles in 60 
human cancer cell lines of the National Cancer Institute’s drug discovery 
program. The accompanying paper (Ross et al.) describes the biological 
implications; here, using the same microarray data, we link the 
bioinformatics with chemoinformatics by correlating gene expression and 
drug activity patterns in the 60 cell types. Clustering the cells on the basis of 
gene expression yields a picture very different from that obtained when the 
cells are clustered on the basis of their response to drugs. Gene-drug 
relationships for the important clinical agents 5-fluorouracil and L-
asparaginase exemplify how variations in the transcript levels of particular
genes can relate to mechanisms of drug sensitivity and resistance. This is 
the first study to integrate large databases on gene expression and 
molecular pharmacology.”
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Results
• “used cDNA microarrays to assess gene 

expression profiles in 60 human cancer cell 
lines of the National Cancer Institute’s drug 
discovery program.”

• “link the bioinformatics with chemoinformatics
by correlating gene expression and drug 
activity patterns in the 60 cell types. 
Clustering the cells on the basis of gene 
expression yields a picture very different from 
that obtained when the cells are clustered on 
the basis of their response to drugs.” 
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Data http://discover.nci.nih.gov/arraytools/
Drug activity matrix A
1400 drugs x 60 cell lines from human 

cancers of various organs (including 118 
drugs with “known mechanism of action”)

adc = activity of drug d in suppressing growth 
of cell line c 

adc = sensitivity of cell line c to drug d
Gene expression matrix T (“T” for target)
1375 genes x same 60 cell lines 
tgc = relative abundance of mRNA transcript of 

gene g in cell line c 
tgc = cell line c’s expression of gene g

Drug activity matrix A = (adc)
adc = -log10 concentration of drug d required to inhibit growth of cell 
line c by 50% compared to controls
1400 drugs x 60 cell lines from human cancers of various organs

Gene expression matrix T = (tgc)
tgc = +log2 relative abundance of mRNA transcript of gene g in cell line 
c
1375 genes x same 60 cell lines
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Correlation & clustering

A(cell 1, cell 2). T(cell 1, cell 2). Correlate & cluster. Different.
A(drug 1, drug 2). T(gene 1, gene 2). Correlate & cluster.

(A drug d, T gene g). Correlate.

Given two matrices that share the same set of column headings, there are precisely five 
possible sets of correlations that can be calculated. This paper calculated all five. 

1. The correlation between different columns of the activity matrix leads to a clustering of cell 
lines according to their responsiveness to different drugs. 

2. The correlation between different columns of the expression matrix leads to a clustering of 
cell lines according to their gene expression. The latter clustering closely corresponds to the 
organ from which the tumor came (leukemia, lung, CNS, etc.), and differs substantially from 
the clustering of cell lines by drug activity.

3. The correlation between different rows of the activity matrix leads to a clustering of drugs 
according to their activity patterns across all cell lines.

4. The correlation between different rows of the expression matrix leads to a clustering of 
genes according to the pattern of amount of mRNA expressed.

5. Finally, the correlation between a row of the activity matrix and a row of the expression 
matrix describes the positive or negative covariation of drug activity with gene expression. 
Scherf et al. plotted the activity-expression correlations for each combination of drug and 
gene after clustering the drugs and genes in steps 3 and 4.
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Clustered image map
gene expression-drug activity correlations plotted as a function 

of clustered genes (x-axis) and clustered drugs (y-axis)

Source of CIM (clustered image map)
http://discover.nci.nih.gov/external/CIM_example3/cgi_user_matrix.html
Used by permission of John N. Weinstein.
Updated Thu Apr 27 07:42:34 EDT 2000. Clustered image plot of X = 1376 bigdata genes, 
and Y = 118 best median averaged drugs, correlated on 60 cells. This image is more recent 
than the image in the published paper.
Use of this: if gene expression is high, and correlation with drug activity is high, then gene 
can be used as a marker for tumor cells likely to be treated effectively by the drug. If 
correlation with drug activity is negative, then marker gene may indicate when use of drug is 
contradicted.
The rectangular blocks of color identify functionally related genes and functionally similar 
drugs.
Questions:
Does one need control non-tumorous cell lines?
Does lack of independence of correlation measures affect statistical significance of 
correlations? Does bootstrap solve all problems?
Do in vitro drug activity (inhibition of protein synthesis), and in vitro gene expression of non-
drug treated cell lines, predict in vivo response of tumors to drugs?
How can measurements from cDNA microarrays be extended to combined measurements 
of DNA, RNA and proteins?
Larger picture: how to embed people in genealogies & changing environments?



3/26/2003

Joel E. Cohen cohen@rockefeller.edu 27

Example 2: integrate
food webs (attribute of ecological 

communities) with 
body size (attribute of individuals) 

& abundance (attribute of 
populations)

Joel E. Cohen, Tomas Jonsson, Stephen R. Carpenter, 
Ecological community description using the food web, 
species abundance, and body size. Proc. National 
Acad. Sci. USA 100(4):1781-1786, 18 February 2003
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Old: Food web with feeding only

Predator species

Prey species 2Prey species 1

Arrow shows direction of flow of food FROM prey TO predator.

Camerano, Lorenzo  1880 Dell'equilibrio dei viventi merce la reciproca
distruzione.  Atti della Reale Accademia delle Scienze di Torino 15:393-414.  
(Translation by Claudia M. Jacobi, edited by J. E. Cohen) On the equilibrium 
of living beings due to reciprocal destruction. In: Frontiers of Theoretical 
Biology.  Lecture Notes in Biomathematics 100, ed. Simon A. Levin, pp. 360-
380.  New York: Springer-Verlag 1994

This first, and still widespread, graphical representation of a food web 
derives from the only picture in Darwin’s Origin of Species, which is a tree for 
the evolution of life forms.
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New: Food web, body size, abundance

Predator species
Body size

Abundance

Prey species 2
Body size

Abundance

Prey species 1
Body size

Abundance

We added 2 quantitative facts about each species. While the food web is an 
attribute of an ecological community, the average body size characterizes 
individuals (weighted by the distribution in a population) and the abundance 
characterizes populations. More generally, one could add any number of 
quantitative or qualitative facts about each species (e.g., chemical 
composition) as well as quantitative or qualitative facts about each link (e.g., 
amounts of energy or specific elements flowing from one species to 
another).
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Tuesday Lake 1984
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Copyright 2003 National Academy of Sciences, U.S.A. Reproduced here on 
authority of Joel E. Cohen, co-author.
The unlumped food webs of Tuesday Lake in 1984. The width of the black, grey and 
white horizontal bars shows, respectively, the log10 body mass (kg), log10 numerical
abundance (ind./m3) and log10 biomass abundance (kg/m3) of each species. The 
vertical positions of the species show trophic height. Basal species have a trophic 
height of unity by definition, but to allow for wider, non-overlapping bars the vertical 
positions of the basal species have been adjusted around unity. The horizontal 
position is arbitrary. Isolated species are omitted. Species with a trophic height of 1 
are phytoplankton, 3 species with a trophic height of 5 or more are fish, species with 
intermediate trophic heights are zooplankton.



3/26/2003

Joel E. Cohen cohen@rockefeller.edu 31

10
0

10
5

10
10

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

 1
 2

 4

 5

 6  7

 910

11

13

14

15

16
17

1819

20

21
22

23

24

25

27

30

31

32

33
34

35

36

37

38

39 4041

42

43
4445

46
47

48

49
5051

52

53

545556
bo

dy
 m

as
s 

(k
g)

Food web, body mass & 
numerical abundance 1984

numerical abundance (individuals/m3)

Copyright 2003 National Academy of Sciences, U.S.A. for black & white graphic. 
Reproduced here on authority of Joel E. Cohen, co-author.
Photograph of Tuesday Lake 0.9 ha surface area
limnology.wisc.edu/slideshow/water/lake4.jpg
Image courtesy of S. Carpenter, Center for Limnology, University of Wisconsin-
Madison.

The Tuesday Lake food web in 1984, in the numerical abundance-body size space. 
The center of a node gives the numerical abundance (individuals/m3) and average 
body mass (kg) for the species identified by the number within the node. Edges 
connect species that interact trophically. Isolated species are omitted. 
Circles = phytoplankton, squares = zooplankton, diamonds = fish.
Body mass times numerical abundance gives biomass. Line of slope -1 is locus of 
constant biomass. Such a line fits right through the data.
10 orders of magnitude variation in N
12 orders of magnitude variation in M
5 orders of magnitude variation in B = MN.
When food web is used to adjust species B by size of available prey B, fit to straight 
line improves.  Taking account of food web improves orderliness of the data.
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Outline
• Past

– biology
– mathematics

• Present
– landscapes of biology & applied math
– examples

• Future
– potential problems
– opportunities

First the bad news, then the good news: problems, then opportunities.
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Potential problems
1. Educating scientists
2. Intellectual property
3. National security
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Potential problems (1) 
educating scientists

• K-16 education in math, science
– U.S. math & science education falls behind that 

of other industrial nations.
• graduate, postdoc cross-training
• diversity: gender, ethnicity, nationality (visas)
• educating peer reviewers to approve 

exploratory research of high quality

“U.S. Urged to Revise Visa Restrictions for Foreign Scientists
The federal government must revise current visa restrictions for foreign 
scientists, engineers and qualified students if the United States is to maintain 
the vitality and quality of its research, said the presidents of the National 
Academies in a recent statement. "Efforts by our government to constrain 
the flow of international visitors in the name of national security are having 
serious unintended consequences for American science, engineering and 
medicine," they said. "We ask the Department of State and its consular 
officials to recognize that, in addition to their paramount responsibility to 
deny visas to potential terrorists, the long-term security of the United States 
depends on admitting scholars who benefit our nation.“ “
Statement:
http://www4.nationalacademies.org/news.nsf/isbn/s12132002?OpenDocume
nt
School children 
http://gimp-savvy.com/cgi-bin/img.cgi?ufwsaX11fXH8dr6154 
Photo Credit: US Fish and Wildlife Service



3/26/2003

Joel E. Cohen cohen@rockefeller.edu 35

Potential problems (2)
intellectual property

• Science as a potlatch culture
• Bayh-Dole 1980

– Rai & Eisenberg, Amer. Scientist 91:52, 2003
• Tragedy of anti-commons: Madey v. Duke

– Duke Petition for Writ of Certiorari to U.S. 
Supreme Court: “The possibility that the 
patent system could stifle or even stymie the 
progress of biotechnology and other 
important fields of research is both real and 
profound.”

Supreme Court 
http://a255.g.akamaitech.net/7/255/2422/08jun20011500/www.supremecourt
us.gov/images/court_front_med.jpg
Image by Franz Jantzen, Collection of the Supreme Court of the United 
States.  Used with permission.

In scientific culture, the bigger the gift of ideas or discoveries that a scientist 
makes to the common pool, the higher that scientist’s prestige as a scientist. 
This culture conflicts with the proprietary impulse behind protection of 
intellectual property.
Bayh-Dole legislation was intended to enhance the commercial exploitation 
of university-generated ideas, by giving universities and scholars at 
universities the right to patent discoveries. But the scrambling for IP rights it 
has induced may inhibit the research that generates ideas.
Administrators of grants of public monies should assure that public interests 
in the results are protected.
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Potential problems (3)
national security

• Win-win domains
– EPA biowarfare monitoring
– foot & mouth disease
– smallpox inoculation strategy

• Good (openness) vs. good (defense)
• Good (privacy) vs. good (security): databases, 

biomarkers (SNPs)
• “Sensitive but unclassified” information

– who does the research? (non-US?)
– with what publication rights/obligations?

Scientists and national defenders can collaborate by supporting and doing open research on 
optimal design of monitoring networks and mitigation strategies for all kinds of biological 
attacks, including anthrax; improving prevention, early detection and response to foot and 
mouth disease and other hazards to the food supply; and optimal design of smallpox 
inoculation strategies. E.g., Lawrence M. Wein, David L. Craft, and Edward H. Kaplan 
2003 Emergency response to an anthrax attack. Proc. National Acad. Sci. 100 (7): 4346–
4351 April 1, 2003 www.pnas.orgycgiydoiy10.1073ypnas.0636861100
Commentary in same issue: G.F.Webb 2003 A silent bomb: The risk of anthrax as a weapon 
of mass destruction

But sometimes values conflict: openness (of scientific methods or biological reagents, for 
example) may pose security risks in the hands of terrorists. Personal privacy (with respect to 
genetic markers, biometric characteristics) may impede efforts to track security suspects. 
How should researchers and public officials trade off these conflicting goods?
Problem of conserving privacy when disparate databases are connected: physician payment 
and disease diagnosis, or health and law enforcement
Inadequate or improper definition of “sensitive but unclassified” information may have a 
serious chilling effect on many varieties of mathematical and biological research. 

Army image in the public domain
http://www.legionxxiv.org/images/photo02.jpg
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Outline
• Past

– biology
– mathematics
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– landscapes of biology & applied math
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• Future
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Mathematics can help biologists grasp 
problems that are otherwise

• Too big
– biosphere

• Too slow
– macro evolution

• Too remote in time
– early extinctions

• Too complex
– brain

• Too small
– molecular structure

• Too fast
– photosynthesis 

• Too remote in space
– life at extremes

• Too dangerous or 
unethical
– epidemiology of 

infectious agents

Sigma Xi, NSF's National Computational Science Institute, and Shodor
Education Foundation, Inc. of Durham North Carolina are running computer 
model workshops to help science students investigate in the classroom 
topics that are otherwise invisible because they are
too small: JEC ion pores in the cell membrane
too large: JEC oceanic food webs
too fast: photosynthesis
too slow: JEC macro evolution of major clades; large-scale ecosystem 
responses to climatic change
too complex: JEC brain
too dangerous: JEC alternative vaccination strategies in response to 
intentional smallpox introductions; Chagas disease model for removal of 
dogs from households without spraying insecticide to remove vectors 
(Cohen, J. E. and Gürtler, Ricardo E. 2001 Modeling household 
transmission of American trypanosomiasis. Science 293(5530):694-698; 
Web supplement at 
http://www.sciencemag.org/cgi/content/full/293/5530/694/DC1 27 July); 
invasions of biological species
http://www.computationalscience.net/press/pdf/relationship.pdf accessed 14 
Feb 2003
http://www.ncsc.org/news/pr/Shodor_final.pdf accessed 14 Feb 2003
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Biological challenges (1)
• Understand cells, their diversity within & 

between organisms, & their interactions 
with biotic & abiotic environments 

• Understand brain, behavior & emotion
– Why do or don’t people have children?

• Replace tree of life by network to 
represent lateral transfers of genes & 
genomes

Tree of life 
http://www.astro.washington.edu/endsofworld/tree%20of%20life%202%20fin
al.jpg
Permission granted by Don Brownlee
For rare examples of phylogenies that recognize horizontal transfer of genes 
and acquisition of genomes, see 
Delwiche, C.F. 1999. Tracing the web of plastid diversity through the 
tapestry of life. American Naturalist 154:S164-S177.   Revised figure 
http://www.life.umd.edu/labs/Delwiche/pubs/endosymbiosis.gif
See p. 878, Fig. 4, of Delwiche, C.F., and J. D. Palmer. 1996. Rampant 
horizontal transfer and duplication of rubisco genes in eubacteria and 
plastids. Mol. Biol. Evol. 13:873-882. 
Margulis, Lynn and Sagan, Dorion 2002 Acquiring Genomes: A Theory of 
the Origins of Species.  Basic Books, New York.
Delwiche, C.F. 2000. Griffins and chimeras: evolution and horizontal gene 
transfer. Bioscience 50:85-87 (book review of Horizontal Gene Transfer, 
1998, M. Syvanen and C.I. Kado, eds., Chapman & Hall, London).
Delwiche, C.F. 2000. Gene Transfer Between Organisms. Pp. 193-197 in: 
McGraw-Hill 2001 Yearbook of Science & Technology. McGraw-Hill, New 
York.



3/26/2003

Joel E. Cohen cohen@rockefeller.edu 40

Biological challenges (2)
• Couple atmospheric, terrestrial & 

aquatic biosphere with global 
physicochemical processes

• Monitor living systems to detect large 
deviations
– epidemics natural or induced
– physiological or ecological pathologies

Tornado http://www.spc.noaa.gov/faq/tornado/alfalfa.jpg
Photo courtesy of NSSL 
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Mathematical challenges (1)
• Understand computation: gaining insight 

& proving theorems from numerical 
computation & agent-based models

• Model multilevel systems, e.g., cells in 
people in human communities in 
physical, chemical, & biotic ecologies

• Understand uncertainty & risk by 
integration of frequentist, Bayesian, 
subjective & other theories of probability

The purpose of computing is insight, not numbers.
-- Richard W. Hamming, Introduction to applied numerical analysis, McGraw-
Hill 1971, p31. 
http://www.cse.psu.edu/~schwartz/quotes.html

Despite nearly 3 centuries of phenomenal progress, we are still at the very 
beginning of a true understanding of probability.
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Mathematical challenges (2)

• Understand data mining, 
simultaneous inference 
(beyond Bonferroni)

• Set standards for clarity, 
performance, publication & 
permanence of software & 
computational results

Image
http://online.rit.edu/images/woman-computer.jpg

Photo credit:  A. Sue Weisler, Rochester Institute of Technology.  Used with 
permission.
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Thank you.
Your thoughts?

cohen@rockefeller.edu

Photograph of Lava Lake, Montana, by Joel E. Cohen 2001. Commercial 
use without permission is prohibited.



3/26/2003

Joel E. Cohen cohen@rockefeller.edu 44

Acknowledgments
I am grateful for helpful suggestions from Mary Clutter, 

Charles Delwiche, Bruce A. Fuchs, Yonatan Grad, 
Alan Hastings, Kevin Lauderdale, Zaida Luthey-
Schulten, Daniel C. Reuman, Noah Rosenberg, 
Michael Pearson and Samuel Scheiner, support from 
U.S. National Science Foundation grant DEB 
9981552, and the hospitality of Mr. and Mrs. William 
T. Golden during this work. Any opinions, findings, 
and conclusions or recommendations expressed in 
this material are those of the author and do not 
necessarily reflect the views of the National Science 
Foundation. 

Additional useful links and references as of 26 February 2003:
http://www.maa.org/mtc/  with link to:
John R. Jungck, “Ten equations that changed biology: mathematics in 
problem-solving biology curricula,” Bioscene 23(1)11-36, May 1997
http://www.nsf.gov/pubsys/ods/getpub.cfm?nsf02125
http://www.nigms.nih.gov/about_nigms/cbcb.html
http://www.bisti.nih.gov/


